Abstract

The effect of Planck scale quantum geometrical effects on measurements with interferometers is estimated with standard physics, and with a variety of proposed extensions. It is shown that effects are negligible in standard field theory with canonically quantized gravity. Statistical noise levels are estimated in a variety of proposals for nonstandard metric fluctuations, and these alternatives are constrained using upper bounds on stochastic metric fluctuations from LIGO. Idealized models of several interferometer system architectures are used to predict signal noise spectra in a quantum geometry that cannot be described by a fluctuating metric, in which position noise arises from holographic bounds on directional information. Predictions in this case are shown to be close to current and projected experimental bounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call