Abstract

Production of acid mine drainage (AMD) is in large part due to pyrite oxidation. The tie-in between environmental remediation and pyrite oxidation requires understanding pyrite oxidation in aqueous systems. In this study, ex-situ measurements using vertical scanning interferometry (VSI) were utilized to investigate pyrite surface reactivity under AMD conditions, such as pH 1 (HCl), an O2-saturated atmosphere, and room temperature, including (1) ex-situ measurements using vertical scanning interferometry (VSI) and (2) solution chemistry measurements using a flow reactor. In the former, two fragments were immersed in the acidic solution for 27 days at undersaturation with respect to pyrite. Weathered surfaces of pyrite that showed surface history (e.g., existence of terraces, steps, etch pits, and non-uniform surface roughness) were selected to examine surface topography changes with time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.