Abstract
In an interferometry system based on one single polarization-maintaining fiber (PMF), defects like the laser's ellipticity, the alignment error between the PMF and the laser source, and the PMF's internal stress will cause the emitted light from the PMF to be incompletely linearly polarized, resulting in nonlinear errors that cannot be ignored. This paper proposes a novel method that can realize polarization compensation for heterodyne interferometry, reduce the ellipticity of the emitted light, and thereby reduce the nonlinear error of the system. When using a PMF with an Extinction Ratio (ER) of 22 dB, the experimental results show that this method can reduce the polarization and increase the ER to 33.95 dB. After polarization compensation, the nonlinear error is reduced from 7.22 nm to 2.02 nm. The proportion of the nonlinear error reduction reaches to 71.99%, which greatly improves the accuracy of the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.