Abstract

A method for phase measurement in common-path interferometers, believed to be novel, is presented. We use the property of phase reconstruction algorithms, such as the Carré and Hariharan algorithms, that do not require uniform phase across the reference beam. Only the ratio of the phase steps must be the same at each pixel. We show phase measurement and reconstruction in a common-path interferometer by shifting either the tilt or the focus of the reference wave front. We present a theoretical explanation of phase measurement using this property. We also present results from a proof-of-principle experiment using a scatterplate interferometer, in conjunction with the tilt phase-shifting technique, to measure the reflected phase of a test optical element. Furthermore, we present a computer simulation to demonstrate the mathematical validity of this measurement technique using defocus shifting, rather than tilt shifting, in the reference wave front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.