Abstract

Deep Proton Writing (DPW) is a rapid prototyping technology allowing for the fabrication of micro-optical and micro-mechanical components in PMMA, which are compatible with low-cost replication technologies. Using DPW, a high-precision 2D fiber connector featuring conically-shaped micro-holes for easy fiber insertion, was realized. When populating these fiber connectors by fiber insertion and fixation, a critical issue is the accurate control of the fiber protrusion. The use of laser interferometry to measure the fiber's facet position with respect to the connector surface to within a few micrometers, is inconvenient in view of the measurement range as compared to the fiber dimensions. In this paper, we propose an interferometric method for in-situ monitoring of the fiber insertion depth, based on the phenomenon of low temporal coherence light interference in a Twyman - Green setup. In addition, achieving a few micrometers measurement range with low coherence light requires vertical scanning of the sample under test. The design of the experimental setup and the achieved measurement results are shown and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.