Abstract

We report picosecond bunch length measurements using an interferometric method for a 3 MeV electron beam having bunch charge ranging from 1 to 14 pC. The method senses the single-cycle sub-terahertz (THz) pulse emitted by each electron bunch as coherent transition radiation which, in turn, is analyzed using a Michelson-type interferometer, forming an interferogram that is then processed to yield the nominal electron bunch length. This sub-THz coherent radiation intensity was measured using a quasi-optical detector (QOD) operated at room temperature. This experiment was quite challenging since the divergence angle of the sub-THz pulse emitted by the low-energy electron bunch exceeds ±10°, and its pulse energy at the entrance to the detector was as low as 100 pJ. When compared to a conventional helium-cooled silicon composite bolometer designed for frequencies above 0.5 THz, the QOD provided much better signal-to-noise ratio in the ∼80 GHz frequency range, which was critical for the successful measurement of the bunch length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.