Abstract

An interferometric characterization of the phase angular shifting produced by rotation of an ion-exchanged glass binary phase plates is presented. The inverse WKB method is used as a starting point to fabricate the phase plates, because such a method can only characterize the phase shift for normal incidence of the light on the plate. A complete phase angular shifting characterization is made by a Mach-Zehnder interferometer where a four-step phase shifting method is used for acquisition of data and a modified Carre algorithm is applied to data processing. The theoretical phase shifting is calculated by using the phase accumulated by a plane wavefront propagating in an axial graded-index media modelling an ion-exchanged glass phase plate. Experimental results present a good agreement with theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.