Abstract

This paper describes a distributed sensing concept using coaxial cable-based Fabry-Perot interferometers (CCFPIs). Multiple reflectors are implemented along a coaxial cable, where every two consecutive reflectors can be considered as a low finesse CCFPI, which has a relatively weak reflection coefficient and insertion loss. The interferogram in a frequency domain of each individual CCFPI could be reconstructed through the proposed signal processing method, so that the phase detection could be applied to any CCFPIs on one cable to achieve high measurement accuracy. A large capacity sensor network with a relatively high measurement accuracy can be implemented simultaneously. The concept takes advantage of the time-domain multiplexing method and the pure frequency domain measurement, which is herein called a joint-time-frequency demodulation technique. Due to its effectiveness and robustness, the device is especially attractive for structural, downhole, or underwater applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.