Abstract

AbstractLactate is a prominent energy substrate for oxidative tumor cells. Interfering with the lactate‐fueled respiration of oxidative tumor cells would be a promising therapeutic strategy for cancer treatment. In this study, α‐cyano‐4‐hydroxycinnamate (CHC) is incorporated into a porous Zr (IV)‐based porphyrinic metal‐organic framework (PZM) nanoparticle, to reduce the lactate uptake by inhibiting the expression of lactate‐proton symporter, monocarboxylate transporter 1 (MCT1) in tumor cells, thus transform lactate‐fueled aerobic respiration to anaerobic glycolysis. The alteration in energy supply can also decrease the oxygen consumption in tumor cells, which would facilitate the photodynamic therapy (PDT) in cancer treatment. Moreover, hyaluronic acid (HA) is coated on the surface of PZM nanoparticles for CD44‐targeting and hyaluronidase‐induced intracellular drug releasing. Both in vitro and in vivo studies confirmed good biocompatibility and enhanced PDT efficacy of the HA‐coated PZM nanoparticles (CHC‐PZM@HA) in tumor cells. The CHC‐PZM@HA platform will provide a new perspective in cancer therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call