Abstract
Edge states in topological systems have attracted great interest due to their robustness and linear dispersions. Here a superconducting-proximitized edge interferometer is engineered on a topological insulator Ta2Pd3Te5 with asymmetric edges to realize the interfering Josephson diode effect (JDE), which hosts many advantages, such as the high efficiency as much as 73% at tiny applied magnetic fields with an ultra-low switching power around picowatt. As an important element to induce such JDE, the second-order harmonic in the current-phase relation is also experimentally confirmed by half-integer Shapiro steps. The interfering JDE is also accompanied by the antisymmetric second harmonic transport, which indicates the corresponding asymmetry in the interferometer, as well as the polarity of JDE. This edge interferometer offers an effective method to enhance the performance of JDE, and boosts great potential applications for future superconducting quantum devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.