Abstract

BackgroundBreast cancer, the most common invasive cancer of women, is a malignant neoplasm and the second main cause of cancer death. Resistance to paclitaxel (Taxol), one of the frequently used chemotherapy agents for breast cancer, presents a major clinical challenge. Recent studies revealed that metabolic alterations of cancer cells play important roles in chemo-resistance.Materials and methodsIn this study, Human breast cancer cells, BT474, SKBR3 and MCF7 were used to study the causal relationship between the lactate exporter, MCT1 (SLC16A1)-modulated glucose metabolism and Taxol resistance of breast cancer cells. Taxol resistant breast cancer cells were established. The intracellular lactate and extracellular lactate levels as well glucose uptake and oxygen consumption were measured. MicroRNA-124 expressions were detected by qRT-PCR from both breast cancer patient samples and breast cancer cells. Target of miR-124 was predicted and verified by Western blot and luciferase assay. An xenograft mice model was established and evaluated for the in vivo tumor therapeutic effects of MCT1 inhibitor plus microRNA-124 treatments.ResultsLow toxic Taxol treatments promoted cellular glucose metabolism and intracellular lactate accumulation with upregulated lactate dehydrogenase-A (LDHA) and MCT1 expressions. By establishing Taxol resistant breast cancer cell line, we found Taxol resistant cells exhibit upregulated LDHA and MCT1 expressions. Furthermore, glucose consumption, lactate production and intracellular ATP were elevated in Taxol resistant MCF7 cells compared with their parental cells. The miR-124, a tumor suppressive miRNA, was significantly downregulated in Taxol resistant cells. Luciferase assay and q-RT-PCR showed MCT1 is a direct target of miR-124 in both breast cancer cell lines and patient specimens. Moreover, co-treatment of breast cancer cells with either MCT1 inhibitor or miR-124 plus Taxol led to synergistically cytotoxic effects. Importantly, based on in vitro and in vivo results, inhibition of MCT1 significantly sensitized Taxol resistant cells. Finally, rescue experiments showed restoration of MCT1 in miR-124 overexpressing cells promoted Taxol resistance.ConclusionsThis study reveals a possible role of miRNA-214-mediated Taxol resistance, contributing to identify novel therapeutic targets against chemoresistant breast cancers.

Highlights

  • Breast cancer, the most common invasive cancer of women, is a malignant neoplasm and the second main cause of cancer death

  • This study reveals a possible role of miRNA-214-mediated Taxol resistance, contributing to identify novel therapeutic targets against chemoresistant breast cancers

  • Taxol resistant breast cancer cells show upregulated glycolysis, monocarboxylate transporter 1 (MCT1) and lactate dehydrogenase A (LDHA) expressions To further investigate the correlation between Taxol and lactate production/secretion, we established Taxol resistant breast cancer cell line originating from MCF7 parental cells by selecting survival cells under gradually elevated Taxol treatments

Read more

Summary

Introduction

The most common invasive cancer of women, is a malignant neoplasm and the second main cause of cancer death. Resistance to paclitaxel (Taxol), one of the frequently used chemotherapy agents for breast cancer, presents a major clinical challenge. Taxol (paclitaxel) is an essential chemotherapeutic agent for the treatment of multiple types of tumor, including breast cancer through disrupting the dynamic equilibrium between tubulin dimers and their polymerized form [4]. In cancer cells, pyruvate produced from glycolysis was converted to lactate by lactate dehydrogenase A (LDHA) rather than acetyl-CoA [7]. This phenomenon is called the “Warburg effect” [8]. MCT1 inhibition could suppress growth and induce cell death of breast cancers through disruption of glycolysis and glutathione synthesis [12], suggesting blocking the MCT1-mediated glycolysis might contribute to improvement of chemotherapeutic effects

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call