Abstract

Neuroinflammation plays a strong part in cerebral ischemia-reperfusion injury, and microglial activation is regarded as a marker for neuroinflammation. Long noncoding RNA small nucleolar RNA host gene 3 (lncRNA SNHG3) is heavily expressed in cerebral ischemia-reperfusion models, but its mechanism is rarely studied. This study aims to explore whether SNHG3 is involved in cerebral ischemia-reperfusion injury by promoting microglial activation and inflammatory factor secretion. Activation of microglia was induced through oxygen-glucose deprivation/reoxygenation (OGD/R) or LPS and the cerebral ischemia-reperfusion injury in mice was induced by transient middle cerebral artery occlusion (tMCAO). Levels of SNHG3, IL-6, and TNF-α were determined by quantitative real-time PCR. Immunofluorescence was used for the detection of Iba-1 expression. Western blot was carried out for the detection of Iba-1 and histone deacetylase 3 (HDAC3) protein levels. An ELISA was performed to detect TNF-α and IL-6 levels. RNA pull-down, RNA immunoprecipitation, and co-Immunoprecipitation assays were conducted to detect the binding between SNHG3 and HDAC3. A H&E staining assay was applied to observe pathologic changes. Microglial activation was observed with immunohistochemistry. Levels of SNHG3, microglial activation marker Iba-1, proinflammatory factors (TNF-α and IL-6) were highly expressed in cell models (treated with OGD/R or LPS) and mouse models (tMCAO). Besides, SNHG3 could bind to HDAC3 and promote its expression. Through further study, we found that SNHG3 could stabilize the protein levels of HDAC3 and inhibit the ubiquitination of HDAC3. Furthermore, interference with SNHG3 down-regulated the levels of HDAC3, Iba-1, TNF-α, and IL-6, whereas the overexpression of HDAC3 reversed the results. The H&E staining assay demonstrated that the condition of vacuoles of different sizes, uneven cytoplasmic staining, and inflammatory infiltration in the brain tissue was improved by interference with SNHG3. The immunohistochemistry result showed that microglial activation marker Iba-1 was increased in the shRNA-SNHG3 group, indicating that interference with SNHG3 inhibited the activation of microglia in the brain. LncRNA SNHG3 aggravated cerebral ischemia-reperfusion injury by promoting the activation of microglia, increasing the levels of HDAC3, and the secretion of inflammatory factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call