Abstract

Influenza-virus-infected cells were labelled with radioactive sugars and extracted to give fractions containing lipid-linked oligosaccharides and glycoproteins. The oligosaccharides linked to lipid were of the 'high-mannose' type and contained glucose. In the glycoprotein fraction, radioactivity was associated with virus proteins and found to occur predominantly in the 'high-mannose' type of glycopeptides. In the presence of the inhibitors 2-deoxy-D-glucose, 2-deoxy-2-amino-D-glucose (glucosamine), 2-deoxy-2-fluoro-D-glucose and 2-deoxy-2-fluoro-D-mannose incorporation of radiolabelled sugars into lipid- and protein-linked oligosaccharides was decreased. Kinetic analysis showed that the inhibitors affected first the assembly of lipid-linked oligosaccharides and then protein glycosylation after a lag period. During inhibition by deoxyglucose and the fluoro sugars lipid-linked oligosaccharides were formed that contained oligosaccharides of decreased molecular weight. No such aberrant forms were found during inhibition by glucosamine. In the case of inhibition by deoxyglucose it was shown that the aberrant oligosaccharides were not transferred to protein. Inhibition of formation of lipid-linked oligosaccharides by deoxyglucose and fluoro sugars was antagonized by mannose, in which case oligosaccharides of normal molecular weight were formed. The inhibition by glucosamine was reversed by its removal from the medium. The reversible effects of these inhibitors exemplify their usefulness as tools in the study of glycosylation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.