Abstract

Recently, the passive bistatic radar (PBR) which exploits frequency modulation (FM) radio transmitters as illuminators, has witnessed widespread usage owing to its various advantages. However, the characteristics of FM-radio-based PBR result in interference components in the range–Doppler (RD) map, which may increase false alarms. Therefore, this study proposes a method for suppressing interference components using a deep learning approach. The two main contributions of this study are as follows. First, a convolutional autoencoder model capable of effectively suppressing interference in the RD map of PBR was proposed. Second, a synthetic RD map dataset generation method that can enable the autoencoder to operate robustly in PBR in a real environment was presented. Further, a performance comparison between the proposed method and existing methods using simulated data proved that the deep learning-based method exhibited superior target detection performance. Furthermore, using the data recorded by the PBR in a real environment, the proposed autoencoder model was shown to effectively suppress interference components in a real interference environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.