Abstract

For a series of incoherent condensate atomic clouds with vortices (an orbital angular momentum) released from an optical lattice, the density-density correlation function of this freely expanding ultracold gases is theoretically investigated. It is shown that the nonzero angular momentum of the atoms has an important effect on the fringe pattern of density-density correlation. Particularly, for a short expansion time, even the rotation direction of the atoms could have an observable effect on the fringe pattern. Observation of this specific fringe pattern would constitute experimental evidence for the presence of a vortex in an atomic condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.