Abstract

Chemolithotrophic denitrification coupled to pyrite oxidation is regarded a key process in the removal of nitrate in aquifers. A common product is nitrite, which is a strong oxidant under acidic conditions. Nitrite may thus interfere with Fe(II) during acidic extraction, a procedure typically used to quantify microbial pyrite oxidation, in overestimating Fe(III) production. We studied the reaction between pyrite (5-125 mM) and nitrite (40-2000 μM) at pH 0, 5.5, and 6.8 in the absence and presence of oxygen. Significant oxidation of pyrite was measured at pH 0 with a yield of 100 μM Fe(III) after 5 mM pyrite was incubated with 2000 μM nitrite for 24 h. Dissolved oxygen increased the rate at pH 0. No oxidation of pyrite was observed at pH 5.5 and 6.8. Our data imply a cyclic model for pyrite oxidation by Fe(III) on the basis of the oxidation of residual Fe(II) by NO and NO2. Interference by nitrite could be avoided if nitrite was removed from the pyrite suspensions through a washing procedure prior to acidic extraction. We conclude that such interferences should be considered in studies on microbially mediated pyrite oxidation with nitrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call