Abstract

Repeated observations of inhomogeneity in cuperate superconductors[1-5] make one immediately question the existance of coherent quasiparticles(qp's) and the applicability of a momentum space picture. Yet, obversations of interference effects[6-9] suggest that the qp's maintain a remarkable coherence under special circumstances. In particular, quasi-particle interference (QPI) imaging using scanning tunneling spectroscopy revealed a highly unusual form of coherence: accumulation of coherence only at special points in momentum space with a particular energy dispersion[5-7]. Here we show that nematic quantum critical fluctuations[10], combined with the known extreme velocity anisotropy[11] provide a natural mechanism for the accumulation of coherence at those special points. Our results raise the intriguing question of whether the nematic fluctuations provide the unique mechanism for such a phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.