Abstract

We have recently observed slow, non-Michaelis-Menten kinetics of activation of native cat plasminogen by catalytic concentrations of streptokinase. In order to understand the reasons for this phenomenon, we undertook to study the formation of the plasminogen-streptokinase activator complex under the same plasminogen activation conditions. The results obtained in this study show that the potential active site in both cat and human plasminogen is capable of binding strongly the specific substrates (S) p-nitrophenyl p-guanidinobenzoate (NPGB) and H-D-valyl-L-leucyl-L-lysyl-p-nitroanilide, through the active site is incapable of hydrolyzing these substrates. Binding studies support these and the following conclusions. Streptokinase binds to this zymogen-substrate complex to create the ternary plasminogen-S-streptokinase complex, which then slowly converts to an acylated plasminogen-streptokinase form. This acylation reaction is 550 times slower than acylation of the preformed plasminogen-streptokinase complex by NPGB. The same reaction also occurs with human plasminogen, though the acylation reaction is 10 times faster than when the cat zymogen is used. NPGB binds specifically to plasminogen but not to streptokinase. These studies proved that inhibition of cat plasminogen activation by streptokinase occurs at the level of activator complex formation. We conclude from our studies that streptokinase binding to both cat and human plasminogen occurs at the potential active site of the zymogen. Consequently, it is probable that plasminogen activation in vivo is inhibited by binding of active site specific inhibitors to plasminogen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.