Abstract

The interface management and resource allocation in backhaul (BH)/access networks for the cloud/centralized radio access networks (C-RAN) are two of the largest challenges to enable the C-RAN architecture deployment successfully in cellular wireless systems. From the PHY perspectives, one major advantage of C-RAN is the ease of implementation of multicell coordination mechanisms to manage the interference and improve the system spectral efficiency (SE). Theoretically, a large number of cooperative cells leads to a higher SE; however, it may also cause significant delay due to extra channel state information feedback and joint processing computational needs at the cloud data center, which is likely to result in performance degradation. In order to investigate the delay impact on the throughput gains, we divide the network into multiple clusters of cooperative small cells and formulate a throughput optimization problem. We model various delay factors and the sum-rate of the network as a function of cluster size, treating it as the main optimization variable. For our analysis, we consider both base stations' as well as users' geometric locations as random variables for both linear and planar network deployments. The output signal-to-interference-plus-noise ratio and ergodic sum-rate are derived based on the homogenous Poisson-point-processing model. The sum-rate optimization problem in terms of the cluster size is formulated and solved. From the radio resource management (RRM) perspective, we consider the problem of joint BH and access links optimization in dense small-cell networks with special focus on time division duplexing mode of operation in BH and access links transmission. Here, we propose a framework for joint RRM where we systematically decompose the problem in BH and access links. To simplify the analysis, the procedure is tackled in two stages. At the first stage, the joint optimization problem is formulated for a point-to-point scenario where each small cell is simply associated to a single user. In the second stage, the problem is generalized for multiaccess small cells. In addition, the chapter addressed thejoint routing and BH scheduling in a dense small-cell networks using 60 GHz multihop BH, coordinated by a local C-RAN central unit. The problem is formulated as a generalized vehicle routing problem and decoupled into two subproblems, channel-aware path selection and queue-aware link scheduling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call