Abstract

A monoenzymatic amperometric biosensor was developed for the detection of acetaldehyde. The sensor is based on the association of screen-printed carbon electrodes and aldehyde dehydrogenase immobilized by a sol-gel entrapment method. Modification of screen-printed carbon electrodes with Reinecke salt of Meldola's Blue (MBRS) resulted in highly sensitive and interference-free nicotinamide-adenine dinucleotide (NADH) detectors. Based on MBRS-mediated oxidation of NADH at -150 mV versus pseudo Ag/AgCl, acetaldehyde was determined in the range 10-260 microM, compatible with wine quality monitoring. The method of immobilization based on sol-gel entrapment was optimized to obtain the best compromise between sensitivity and operational stability. The sensor response was stable for 40 consecutive assays with methyltrimethoxysilane used as alkoxide precursor, thus allowing a possible calibration of the sensor before each measurement. The biosensors were used to analyze French wines. The method was validated with a commercially available enzymatic kit based on a standard spectrophotometric method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.