Abstract
The effect of hoop stresses in reducing cylindrical roller bearing fatigue life was determined for various classes of inner-ring interference fit. Calculations were performed for up to seven fit classes for each of the 10 bearing sizes. The hoop stresses were superimposed on the Hertzian principal stresses created by the applied radial load to calculate roller bearing fatigue life. A method was developed through a series of equations to calculate the life reduction for cylindrical roller bearings. All calculated lives are for zero initial internal clearance. Any reduction in bearing clearance due to interference fit would be compensated by increasing the initial (unmounted) clearance. The results are presented as tables and charts of life factors for bearings with light, moderate, and heavy loads and interference fits ranging from extremely light to extremely heavy for bearing accuracy class RBEC-5 (ISO class 5). Interference fits on the inner ring of a cylindrical roller bearing can significantly reduce bearing fatigue life. In general, life factors are smaller (lower life) for bearings running under a light load where the unfactored life is the highest. The various bearing series within a particular bore size had almost identical interference-fit life factors for a particular fit. The tightest fit at the high end of the tolerance band produces a life factor of approximately 0.40 for an inner-race maximum Hertz stress of 1200 MPa (175 ksi) and a life factor of 0.60 for an inner-race maximum Hertz stress of 2200 MPa (320 ksi). Interference fits also impact the maximum Hertz stress-life relation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.