Abstract

Chemically modified elastomer surfaces are important to many applications, including microfluidics and soft sensors. Sensitive characterization of the interfacial chemistry of soft materials has been a persistent challenge, given their structural and chemical complexity. This article reports a method to probe local chemical states of elastomer surfaces that leverages the interference effects observed in micro-Raman spectroscopy. Unexpectedly, systematic variations of Raman scattering intensity were observed across a chemical wettability gradient grafted to the surface of a poly(dimethylsiloxane) (PDMS) film. Specifically, hydrophobic surface regions with a high graft density of long-chain hydrocarbon molecules showed suppressed Raman intensity. An optical interference model that accounts for molecular filling and swelling of an interfacial glassy layer during chemical modifications of the PDMS surface quantitatively reproduces experimental observations. This work establishes the spectroscopic signatures of interfacial chemical modifications on elastomer surfaces and enables a noncontact optical probe of local chemical states at the micro- and nanoscale compatible with the complex interfaces of soft materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.