Abstract
We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode, within the confines of a photonic crystal material. In freespace, we found that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of- phase with the external pump field when the pump field frequency equals the cavity frequency. The better the cavity, the quicker this build-up occurs. When the cavity field reaches this out-of-phase condition, the resonance fluorescence from the atom in the cavity goes to zero. This is a purely classical interference effect between the two out-of-phase fields, with the resonance fluorescence going to zero at the same time as the two excited state populations go to zero. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals. In this paper, we investigate the additional effects due to the presence of the altered photon density of states in a photonic crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.