Abstract
Ion-selective membranes operated in a thin layer coulometric detection mode have previously been demonstrated to exhibit attractive characteristics in view of realizing sensors without the need for frequent recalibration. In this methodology, the analyte ion is exhaustively removed across an ion-selective membrane by an applied potential, and the resulting current is integrated to yield the coulomb number and hence the amount of analyte originally present in the sample. This exhaustive process, however, places greater demands on the selectivity of the membrane compared to direct potentiometry, since the level of interference will increase as the analyte depletes. We evaluate here a double pulse protocol to reduce the level of interference, in which the sample is electrolyzed once again after the initial coulometric detection pulse. Since the analyte ion is no longer present at significant concentrations during the second pulse, but an interfering ion of high concentration did not appreciably deplete, the second electrolysis step may be used to partially compensate for undesired interference. These processes are here evaluated by numerical simulation for ions of the same charge, demonstrating that the resulting coulomb number may indeed be reduced for systems of limited selectivity. The improvement in operational selectivity relative to uncompensated coulometry is found to be ca. 6-fold. The methodology is successfully demonstrated experimentally with a calcium selective membrane and tetraethylammonium as a model interfering agent, and the observed relative errors after background compensation can be favorably compared to that in direct potentiometry where no sample depletion occurs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.