Abstract

The velocity map recorded in above-threshold ionization of xenon at 800 nm exhibits a distinct carpetlike pattern of maxima and minima for emission in the direction approximately perpendicular to the laser polarization. The pattern is well reproduced by a numerical solution of the time-dependent Schrödinger equation. In terms of the simple-man model and the strong-field approximation, it is explained by the constructive and destructive interference of the contribution of the long and the short orbit. Strictly perpendicular emission is caused by ionization at the two peaks of the laser field per cycle, which results in a 2ħω separation of the above-threshold ionization rings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call