Abstract

As car expertise increases, so does interference between the visual processing of faces and that of cars; this suggests performance trade-offs across domains of real-world expertise. Such interference between expert domains has been previously revealed in a relatively complex design, interleaving 2-back part-judgment task with faces and cars (Gauthier et al., 2003). However, the basis of this interference is unclear. Experiment 1A replicated the finding of interference between faces and cars, as a function of car expertise. Experiments 1B and 2 investigated the mechanisms underlying this effect by (1) providing baseline measures of performance and (2) assessing the specificity of this interference effect. Our findings support the presence of expertise-dependent interference between face and non-face domains of expertise. However, surprisingly, it is in the condition where faces are processed among cars with a disrupted configuration where expertise has a greater influence on faces. This finding highlights how expertise-related processing changes also occur for transformed objects of expertise and that such changes can also drive interference across domains of expertise.

Highlights

  • Face perception is often described as a domain of perceptual expertise

  • Comparing with Experiment 1, the estimate of facilitation from faces among eggs was both indistinguishable from that obtained from car novices matching faces among transformed cars, t(26) = 1.27, p = 0.22, d = 0.50, and significantly less than that obtained from car experts matching faces among cars with inverted tops, t(26) = 2.39, p = 0.02, d = 0.94

  • Having found that the interaction depended on the processing of faces among transformed cars, we investigated these effects further by using a dual-task with isolated parts to partition congruency effects into interference from incongruent parts and facilitation from congruent parts

Read more

Summary

Introduction

Face perception is often described as a domain of perceptual expertise. Our skill with faces manifests itself across many different tasks and is often impressive for familiar faces. Normal adults can recognize familiar faces with accuracy >90% despite not having seen some of these faces for over 35 years (Bahrick et al, 1975). Most people are as fast to categorize an image as a “face” as they are to categorize it at an individual level (“Bill Clinton’s face”; Tanaka, 2001). Observers are much slower to categorize an image of a bird at a similar subordinate level—for example, categorizing an animal as a “cardinal” is slower than categorizing it at the basic level, “bird” (Tanaka and Taylor, 1991). Observers can retain more faces in visual short-term memory than they can other objects (Curby and Gauthier, 2007; Curby et al, 2009). Face processing is more sensitive to subtle changes in the spatial-relations between features than object processing (Haig, 1984; Hosie et al, 1988; Kemp et al, 1990; Bruce et al, 1991)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.