Abstract

Dynamic gain equalization filters (DGEFs) are important for high-performance wavelength division multiplexed (WDM) communications. One of the first demonstrated DGEF used a micromechanical etalon filter array illuminated with free-space spectral demultiplexing optics. Here, we present subsequent research on etalon-based dynamic spectral filters, including vertical device structures which linearize and reduce the drive voltage from 70 to 40 V, and spatially-segmented etalons which allow channelized spectral equalization and further reduce drive voltage. We describe a prototype using a simplified cylindrical optomechanical package with a 104-nm broadband spectral response, 7.5-dB insertion loss and less than 16-V operation voltage. Finally, we show the use of a 42-nm bandwidth DGEF prototype with feedback stabilization to more than double the number of channels and operating bandwidth of a conventional Erbium-doped fiber amplifier while maintaining < 1-dB power uniformity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.