Abstract

Providing high-bandwidth and fast-speed links, wireless local area networks (WLANs) in the Terahertz (THz) band have huge potential for various bandwidth-intensive indoor applications. However, due to the specific phenomena in the THz band, including severe reflection loss, indoor blockage effects, multi-path fading, the analysis on the interference and coverage probability at a downlink is challenging. In this paper, indoor blockage effects caused by the walls and human bodies are analyzed. Next, a statistical THz channel model is proposed to characterize the THz indoor propagation. In light of these, the moment generating functions of the aggregated interference and theoretical expressions for the mean interference power are derived. As a result, the approximated coverage probability and average network throughput are derived. Extensive numerical results show that for the nearest access point (nearest-AP) user association scheme, the optimal AP density is 0.15/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , which results in the coverage probability reaches 93% and the average network throughput is 30 Gbps/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . In addition, by adopting a novel line-of-sight access point (LoS-AP) user association mechanism, the coverage probability and the average network throughput can be further improved by 3 percent and 2 Gbps/m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.