Abstract

Bose–Einstein condensates of particles behave in many ways like coherent radiation fields, and the realization of Bose–Einstein condensation in dilute gases has opened up the experimental study of interactions between coherent matter waves. In addition, the existence of these dilute trapped quantum gases has prompted a re-examination of a number of theoretical issues. In Sec. 13.1 we discuss Josephson tunnelling of a condensate between two wells and the role of fluctuations in particle number and phase. The number and phase variables play a key role in the description of the classic interference experiment, in which two clouds of atoms are allowed to expand and overlap (Sec. 13.2). Rather surprisingly, an interference pattern is produced even though initially the two clouds are completely isolated. Density fluctuations in a Bose gas are studied in Sec. 13.3, where we relate atomic clock shifts to the two-particle correlation function. The ability to manipulate gaseous Bose–Einstein condensates by lasers has made possible the study of coherent matter wave optics and in Sec. 13.4 we describe applications of these techniques to observe solitons, Bragg scattering, and non-linear mixing of matter waves. How to characterize Bose–Einstein condensation in terms of the density matrix is the subject of Sec. 13.5, where we also consider fragmented condensates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.