Abstract

Interference alignment (IA) is a multiplexing gain optimal transmission strategy for the interference channel. While the achieved sum rate with IA is much higher than previously thought possible, the improvement comes at the cost of requiring network channel state information at the transmitters. This can be achieved by explicit feedback, a flexible yet potentially costly approach that incurs large overhead. In this paper we propose analog feedback as an alternative to limited feedback or reciprocity based alignment. We show that the full multiplexing gain observed with perfect channel knowledge is preserved by analog feedback and that the mean loss in sum rate is bounded by a constant when signal-to-noise ratio is comparable in both forward and feedback channels. When signal-to-noise ratios are not quite symmetric, a fraction of the multiplexing gain is achieved. We consider the overhead of training and feedback and use this framework to numerically optimize the system's effective throughput. We present simulation results to demonstrate the performance of IA with analog feedback, verify our theoretical analysis, and extend our conclusions on optimal training and feedback length.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.