Abstract

In this work, we unravel a facile solution-based method to prepare chromium germanium telluride, Cr2Ge2Te6 (CGT) quantum dots (QDs), which present strong light-matter interactions with monolayer transition metal dichalcogenides (TMDs) in their CGT/TMD vertical heterostructures. The heterostructures' optoelectronic properties were controlled by simply varying the QDs thickness. We observed contrasting emissions from monolayer TMDs in the various CGT QDs-TMDs (of WS2, WSe2 and MoS2) heterostructures depending on the density of QDs in the heterostructures. Low-density CGT QDs-based heterostructures demonstrated a reduced light emission intensity compared to the isolated monolayers, but with an increased trion ratio due to the electron doping effect of CGT QDs. In contrast, high-density CGT QDs-based heterostructures showed an increased light emission intensity and a broadened, red-shifted emission peak in comparison to the bare TMDs, attributed to the enhanced optical absorption in the heterostructures arising from the assembled CGT QDs. Finally, proof-of-concept field-effect transistor (FET) and photodetector devices based on the created CGT QDs-WS2 heterostructures were designed, which showed an enhanced optoelectronic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call