Abstract

Emergent strategies for efficient solar energy conversion have focused on ways to harness photons in the lower-energy range of sunlight that cannot be utilized by conventional semiconductor photocatalyst systems. Recent research has demonstrated that interfaced plasmonic–ferroelectric particles represent a promising strategy for the utilization of near-infrared (NIR) light owing to the possibility of the more efficient injection of hot charge carriers from noble metal nanoparticles. Described herein, platinum-end-capped gold nanorods (AuNRs) function as antennae to absorb low-energy NIR photons to generate hot electrons that can be injected into ferroelectric PbZrxTi1–xO3 (PZT; x = 0.48, 0.50, 0.52, 0.54, 0.56, and 0.60) and drive the reduction of water to molecular hydrogen at its surfaces. As an aqueous suspension, the interfaced AuNR-PZT particles exhibited maximal photocatalytic rates for hydrogen formation under a 976 nm diode laser (powder density = 2.0 W cm–2) for the 52% Zr (x = 0.52) composition ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call