Abstract

The direct interfacing of photonic crystal fiber to a metallic nanoantenna has widespread application in nanoscale imaging, optical lithography, nanoscale lasers, quantum communication, in vivo sensing, and medical surgery. We report on the fabrication of a needle-shaped plasmonic nanoantenna on the end facet of a photonic crystal fiber using electron-beam-induced evaporation of platinum. We demonstrate the coupling of light from the fiber waveguide mode to the subwavelength nanoantenna plasmonic mode focusing down to the apex of the plasmonic needle using a polarization-resolved far-field side-scatter imaging technique. Our work provides an important step toward widespread application of optical fibers in nearfield spectroscopic techniques such as tip-enhanced Raman and fluorescence microscopy, single-photon excitation and quantum sensors, nanoscale optical lithography, and lab-on-fiber devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.