Abstract

Spherically supported bilayer lipid membranes (SS-BLMs) exhibiting co-existing membrane microdomains were created on spherical silica substrates. These 5 μm SiO2-core SS-BLMs are shown to interact dynamically when interfaced with living cells in culture, while keeping the membrane structure and lipid domains on the SS-BLM surface intact. Interactions between the SS-BLMs and cellular components are examined via correlating fluorescently labeled co-existing microdomains on the SS-BLMs, their chemical composition and biophysical properties with the consequent organization of cell membrane lipids, proteins, and other cellular components. This approach is demonstrated in a proof-of-concept experiment involving the dynamic organization of cellular cytoskeleton, monitored as a function of the lipid domains of the SS-BLMs. The compositional versatility of SS-BLMs provides a means to address the relationship between the phenomenon of lipid phase separation and the other contributors to cell membrane lateral heterogeneity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.