Abstract

Purpose Real-time implementation of sophisticated algorithms on robotic systems demands a rewarding interface between hardware and software components. Individual robot manufacturers have dedicated controllers and languages. However, robot operation would require either the knowledge of additional software or expensive add-on installations for effective communication between the robot controller and the computation software. This paper aims to present a novel method of interfacing the commercial robot controllers with most widely used simulation platform, e.g. MATLAB in real-time with a demonstration of visual predictive controller. Design/methodology/approach A remote personal computer (PC), running MATLAB, is connected with the IRC5 controller of an ABB robotic arm through the File Transfer Protocol (FTP). FTP server on the IRC5 responds to a request from an FTP client (MATLAB) on a remote computer. MATLAB provides the basic platform for programming and control algorithm development. The controlled output is transferred to the robot controller through Ethernet port as files and, thereby, the proposed scheme ensures connection and control of the robot using the control algorithms developed by the researchers without the additional cost of buying add-on packages or mastering vendor-specific programming languages. Findings New control strategies and contrivances can be developed with numerous conditions and constraints in simulation platforms. When the results are to be implemented in real-time systems, the proposed method helps to establish a simple, fast and cost-effective communication with commercial robot controllers for validating the real-time performance of the developed control algorithm. Practical implications The proposed method is used for real-time implementation of visual servo control with predictive controller, for accurate pick-and-place application with different initial conditions. The same strategy has been proven effective in supervisory control using two cameras and artificial neural network-based visual control of robotic manipulators. Originality/value This paper elaborates a real-time example using visual servoing for researchers working with industrial robots, enabling them to understand and explore the possibilities of robot communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call