Abstract

This paper provides some new insights into the mechanism of interaction and modifications in thermoplastic composites based on low density polyethylene (LDPE), ground tire rubber (GTR) and non-polar elastomer. The composites were prepared using a co-rotating twin-screw extruder at variable LDPE/GTR ratio and constant elastomer content. Two types of commercial elastomer were applied: styrene-butadiene-styrene (SBS) block copolymers (Kraton®) with different topologies (linear/branched) and partially cross-linked butyl rubbers (Kalar®) with different Mooney viscosities. Processing characteristics, static mechanical properties (tensile strength, elongation at break, hardness), dynamic mechanical properties, thermal properties and morphology of the resulting thermoplastic composites were investigated. Microstructure analysis shows that modification of LDPE/GTR composites with non-polar elastomers caused encapsulation of GTR particles within the elastomer phase. This phenomenon has significant influence on macro-behavior of thermoplastic composites based on LDPE/GTR blends. The results indicate that SBS copolymer improves interfacial interactions between GTR and LDPE, which enhances mechanical and thermal properties of the composites. On the other hand, cross-linked butyl rubber showed partial compatibility with LDPE and low compatibility with GTR particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.