Abstract

Aqueous zinc-ion batteries (AZIBs) are fundamentally challenged by the instability of the electrode/electrolyte interface, predominantly due to irreversible zinc (Zn) deposition and hydrogen evolution. Particularly, the intricate mechanisms behind the electrochemical discrepancies induced by interfacial Zn2+-solvation and deposition behavior demand comprehensive investigation. Organic molecules endowed with special functional groups (such as hydroxyl, carboxyl, etc.) have the potential to significantly optimize the solvation structure of Zn2+ and regulate the interfacial electric double layer (EDL). By increasing nucleation overpotential and decreasing interfacial free energy, these functional groups facilitate a lower critical nucleation radius, thereby forming an asymptotic nucleation model to promote uniform Zn deposition. Herein, this study presents a pioneering approach by introducing trace amounts of n-butanol as solvation regulators to engineer the homogenized Zn (H-Zn) anode with a uniform and dense structure. The interfacial reaction and structure evolution are explored by in/ex-situ experimental techniques, indicating that the H-Zn anode exhibits dendrite-free growth, no by-products, and weak hydrogen evolution, in sharp contrast to the bare Zn. Consequently, the H-Zn anode achieves a remarkable Zn utilization rate of approximately 20% and simultaneously sustains a prolonged cycle life exceeding 500 h. Moreover, the H-Zn//NH4V4O10 (NVO) full battery showcases exceptional cycle stability, retaining 95.04% capacity retention after 400 cycles at a large current density of 5 A g−1. This study enlightens solvation-regulated additives to develop Zn anode with superior utilization efficiency and extended operational lifespan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.