Abstract

State-of-the-art hydrogen evolution reaction (HER) catalysts have been Pt- or Pt-based alloys so far due to their extremely low onset potential; however, their HER kinetics become worse under strong cathodic polarization. Herein, we take commercial Pt/C decorated with a small amount of metal oxides (MOx-Pt/C) as model catalysts to improve the HER kinetics at a wide cathodic potential range in alkaline conditions. The MOx-Pt/C catalysts markedly reduce the Tafel slope and overpotential under both small and large cathodic polarization. Multiscale simulations reveal that the metal oxides can cause a so-called local electric field enhancement and induce interfacial water enrichment and reorientation. It accelerates the diffusion of hydrated K+ and facilitates the activation of interfacial water, which boosts the Volmer step to match the fast H2 evolution especially under strong potential polarization. Our work discloses important clues about how multiple components play a role in HER electrocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.