Abstract

Using classical non-equilibrium molecular dynamics simulations (NEMD), the interfacial thermal resistance and thermal rectification of nitrogen-doped zigzag graphene (NDZG) are investigated. Two different structural models about nitrogen-doped graphene are constructed. It is found that the interfacial thermal resistance at the location of nitrogen-doping causes severe reduction in thermal conductivity of the NDZG. Thermal rectification of the triangular single-nitrogen-doped graphene (SNDG) decreases with increasing temperature. However, thermal rectification is not detected in the parallel various–nitrogen-doped graphene (VNDG). These results suggest that SNDG might be a promising structure for thermal device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call