Abstract

Interfacial tensions of the aqueous two-phase systems formed by cationic-anionic surfactant mixtures were measured using spinning drop method. The effects of surfactant structure, molar ratio of cationic to anionic surfactants, surfactant concentration, salt, and temperature on the interfacial tensions were investigated. It was shown that the values of the interfacial tensions of the aqueous two-phase were in the scale of ultra-low interfacial tensions at certain molar ratios of cationic to anionic surfactants. Three types of interfacial tension curves were observed. The first curve comprised two curves that were located on either side of 1:1 molar ratio, and the interfacial tension decreased with the increase of excessive surfactant components. The second one was a saddle-shaped curve that strode over the 1:1 molar ratio. The third type was a saddle-shaped curve that was located beside the 1:1 molar ratio. The types of interfacial tensions depended on the molecular structure of the surfactants such as the hydrophilic groups and the lengths and symmetry of hydrophobic chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.