Abstract

A continued interest in polyelectrolyte phase diagrams guides the study of interfacial phenomena driven by polyelectrolyte complexation. The liquid–liquid interfaces formed by associative phase separation of oppositely charged synthetic and natural polyelectrolytes provide measurement challenges addressed by force-sensitive methods and deformed droplet retraction. The ultralow interfacial tension, typical of these systems, is sensitive to salt concentration and temperature and displays universal features described by mean-field theory. Several areas of fundamental development and novel applications of charge complexation for interfacial study and examples from membraneless organelles and biomolecular condensates are described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call