Abstract

Compared to the enormous number of nanostructures that have been documented, the variety of nanostructures produced by organic polymerization is rather limited. We devised an unconventional route and a sustainable approach to distribute tellurium nanoparticles (Te NPs) in a poly(3,4-ethylene dioxythiophene) (PEDOT) matrix to form semiconducting organic-inorganic nanocomposites for potential applications in electrochemical sensing. The adopted strategy of in situ liquid/liquid interface-assisted polymerization aids in the formation of intimately tethered Te NPs on the PEDOT polymer chains, thereby preventing the aggregation of Te NPs. The untapped versatility inherent to using biphasic systems for interfacial polymerization is explored at three interface systems of immiscible solvents: chloroform/water, dichloromethane/water, and hexane/water, giving rise to PEDOT/Te nanocomposite (PTeNC) of distinct morphology. Chemical nature, crystallinity, and morphology investigations proved the successful formation of PTeNC in different interface systems. Consequently, the temporal evolution of interfacial tension in the preferential adsorption of nanoparticles and final product morphology was monitored by pendant drop tensiometry. Owing to the role of morphology, PTeNC synthesized at the hexane/water interface showcased the best electrocatalytic behavior toward nonenzymatic detection of l-ascorbic acid, an essential nutritional factor, and a neuromodulator with a limit of detection of 0.66 μM and excellent sensitivity, selectivity, and reproducibility. Hence, we envision that interface-assisted polymerization offers a nascent and robust strategy for encapsulating unusual electrode materials in polymeric matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call