Abstract

Interfacial studies were carried out on a model composite system consisting of a short carbon fibre embedded in a polycarbonate matrix. While the composite was being strained, the local strain along the fibre was monitored using a Raman spectroscopic technique. The residual compressive strain in the fibre due to fabrication was found to be −0.45%. Subsequent loading of the composite up to 0.55% in tension resulted in a complex stress field consisting of tension at the fibre ends and compression in the middle of the fibre. The fibre strain at different levels of applied load was converted to interfacial shear stress (ISS) distribution along the fibre by employing a simple equilibrium analysis. The shape of the ISS profiles indicated a predominantly frictional type of load transfer from the matrix to the fibre. Finally, the maximum ISS value of 15 MPa was found to be unaffected by the amount of strain experienced by the composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.