Abstract

Layered thin films of the ferroelectric perovskite Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCZT) and the ferromagnetic half-metal La0.80Sr0.20MnO3 (LSMO) are well-known multiferroic systems that show promise for spintronic applications. In this work, the structure–property relationships are explored in novel BCZT/LSMO thin film heterostructures with optimized ferroic properties. Epitaxial BCZT/LSMO thin film heterostructures are grown by varying the lattice mismatch strains on single crystal LaAlO3 (LAO) (100) and MgO (100) substrates using the pulsed laser deposition technique. The epitaxial strain in the films gives rise to a tetragonal distortion of the BCZT and LSMO unit cells and significantly affects their magnetotransport and magnetodielectric properties. The BCZT/LSMO/LAO heterostructure exhibits a colossal magnetoresistance effect due to a large out-of-plane tensile strain, which induces enhanced carrier hopping in the LSMO layer as compared to the BCZT/LSMO/MgO film. The larger tetragonal distortion of the BCZT unit cell in BCZT/LSMO/MgO contributes to higher dielectric permittivity, with a greater dielectric maxima temperature and freezing temperature. Magnetodielectric measurements reveal a hitherto unobserved giant magnetodielectric effect in the BCZT/LSMO/MgO film, attributed to a large in-plane strain, which induces interfacial polarization distortion at the interfacial layer. Overall, this work elucidates the unique strain and charge-mediated cross-coupled phenomena of magnetic and electric orders in multiferroic thin film heterostructures, which are critical for their technological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.