Abstract

The mass production of graphene and graphene oxide (GO) is essential for its use in commercial products. To improve its processing in the solution, dispersion behavior of graphene-based materials and their colloidal stability must be further understood. This study used all-atom molecular dynamics simulations to understand how electrostatics, van der Waals interactions, and hydrogen bonding affect the exfoliation and stability of three-layered graphene as a function of oxidation and solvent. Water, methanol, and ethanol were chosen as solvents due to their various dispersion behaviors. Our study indicated that (1) both surface oxidation level and solvent type can heavily influence the stability and (2) a decrease in interlayer vdW interactions, an increase in GO–solvent electrostatic interactions, and an increase in GO–solvent hydrogen bonding are important factors that can facilitate the dissolution of GO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.