Abstract

We study the role of thermal magnons in the spin and heat transport across a normal-metal/insulating-ferromagnet interface, which is beyond an elastic electronic spin transfer. Using an interfacial exchange Hamiltonian, which couples spins of itinerant and localized orbitals, we calculate spin and energy currents for an arbitrary interfacial temperature difference and misalignment of spin accumulation in the normal metal relative to the ferromagnetic order. The magnonic contribution to spin current leads to a temperature-dependent torque on the magnetic order parameter; reciprocally, the coherent precession of the magnetization pumps spin current into the normal metal, the magnitude of which is affected by the presence of thermal magnons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call