Abstract
Advanced adsorption of low concentration phosphate by low cost lignin-based adsorbents from water or wastewater is an economic and effective way to prevent the occurrence of eutrophication. In this work, lignin, a waste material recovered from black liquor, was treated with a simple interfacial solid-phase chemical modification method to design a high efficiency phosphate adsorbent. First, the lignin was modified by triethylenetetramine (TETA) with the Mannich reaction, and then Fe(III) was chelated onto the aminated lignin. An efficient low concentration phosphate adsorption was observed by the kinetics experiments, which followed pseudo-second-order kinetically. The adsorption isotherms and thermodynamics were examined. This adsorbent was characterized by FTIR, SEM, particle size analysis, ζ potential analysis, and XPS. FTIR and XPS analyses indicated that iron atom was the binding site for phosphate adsorption. SEM pictures suggested that the adsorbent was uniformly ball-shaped and the particle size was about 450 nm. Both the adsorption experiments and characterization demonstrated that the phosphate adsorption mechanism of Fe(III)-complexed lignin (Fe-CL) followed the complexation mechanism between iron and phosphate on Fe-CL. This study implied that biomass-based lignin could be used as a potential adsorbent for efficient removal of low concentration phosphate from water or wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.