Abstract

Freshwater supply is declining in the context of climate change, pollution, and soil salinization, calling for sustainable methods to produce drinking water. For instance, salt water can be converted into pure water by steam generation. Interfacial solar steam generation involves photoabsorbers consisting of a photothermal material with broad solar absorption and a porous substrate with a thermal insulating character. Nonetheless, scaling up of classical devices for interfacial solar steam generation is actually limited by cost, biofilm formation, salt fouling, complicated fabrication processes, and toxicity. Alternatively, wood-based devices are cheap, biodegradable, abundant, and display high fluxes of evaporation compared with other nonbiodegradable photoabsorbers. Here we review the design and applications of wood-based solar steam generation devices, with focus on wood structure and properties, different types of devices, and factors controlling the evaporative performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call