Abstract

The segment density profile of end-functionalized deuterated polystyrene (EF-dPS) polymers anchored in a surrounding melt of hydrogenated polystyrene (hPS) to an interface with silicon was determined by neutron reflectometry. Thin films of mixtures with various volume fractions of the EF-dPS and hPS were spun cast from toluene solutions onto the silicon. These films as cast were uniform as a function of depth. After heating to 184 C for approximately 1 day to allow equilibrium segregation to be achieved in the films, neutron reflection measurements were performed. The EF-dPS segment density profiles ({phi})z needed to fit the reflectivity data showed a high {phi} at the silicon interface which increased to a maximum approximately 10 nm away from the interface and then fell monotonically to the bulk segment density [illegible]. The interface excess determined by integration of these profiles was in excellent agreement with that directly determined by forward recoil spectrometry on the same samples. The form of the profiles is consistent with the predictions of a self-consistent mean field theory if, in addition to a large attachment free energy of the end group to the silicon, there is a weak preferential attraction of the silicon for the more polarizable hPS segmentsmore » relative to the less polarizable dPS segments.« less

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.