Abstract

In the rough phase, the width of interfaces separating different phases of statistical systems increases logarithmically with the system size. This phenomenon is commonly described in terms of the capillary wave model, which deals with fluctuating, infinitely thin membranes, requiring ad hoc cut-offs in momentum space. We investigate the interface roughening from first principles in the framework of the Landau-Ginzburg model, that is renormalized field theory, in the one-loop approximation. The interface profile and width are calculated analytically, resulting in finite expressions with definite coefficients. They are valid in the scaling region and depend on the known renormalized coupling constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.